As the name implies, oxidative addition is the addition of a substrate molecule to a transition metal complex. In this process, the metal center is oxidized by two electrons. In the generic mononuclear examples below, the metal goes from the x to the x+2 oxidation state. In most cases, two new ligands are generated, but this need not always be the case. Binuclear processes are also possible as illustrated by these general examples:
Oxidative addition is formally the microscopic reverse of reductive elimination, and it is not surprising that a series of reactions involving an oxidative addition, a rearrangement and then a reductive elimination form the basis for a variety of industrially important catalytic cycles.
Important principles to remember about oxidative addition are:
Note: Oxidative addition reactions can not occur on metal centers that are already in their highest oxidation state. For example, Ta5+ can not undergo oxidative addition to give Ta7+. In these cases, a sigma bond metathesis reaction is a likely alternative.
There are a number of mechanisms that one might postulate for the process of oxidative addition, but a detailed analysis is presently beyond the scope of this work.
If you like the self-test exercises presented here, give me some feedback via email. If there is enough support, I'll add more throughout the OMHTB. - RT |
THESE QUIZZES ARE NOT CURRENTLY WORKING - We moved to a new server platform in March 2023 and I have to go back and redo the coding that drives the grading. Stay tuned...