previous topic
ACGIH
Glossary Index
Glossary Index
next topic
Acidosis
MSDS
Topics
Free Sites FAQ's Regulations Glossary Software Suppliers
Books Forum Poll Fun stuff Quiz Store
Understand your MSDS with the MS-Demystifier Search ALL our MSDS info

DOT Dangerous When Wet placard
Be sure you're in compliance with DOT placards and labels from Safety Emporium.
Acid

Definition

There are several definitions for acid:

  1. The Arrhenius definition is a substance that ionizes in water to product H+ ions.
  2. The Brønsted definition is a substance that is a proton (H+) donor. This does not require the substances to be in aqueous (water) solution).
  3. The Lewis definition is a substance that can accept a pair of electrons. This does not require a proton or aqueous solution.

There are several other definitions as well. An acidic solution is defined as one that has a pH less than 7.0.

Additional Info

The following are examples of strong acids, meaning that they completely dissociate into ions and form H+ in aqueous (water) solution. In the reaction equation shown below, the single-headed arrow signifies that the reaction proceeds completely to the right (e.g. there will be no discrete HCl molecules left in the solution):

HCl   →   H+ + Cl-

Chemists will tell you that the following equation is more correct because H+ ions (sometimes referred to as "protons") actually exist as H3O+ ions (called hydronium cations) in water:

HCl + H2O   →   H3O+ + Cl-

The actual behavior is far more complex, but either of the above are a convenient enough way of thinking about how acids dissociate in water. Regardless of how you write the equations, all of the following strong acids will cause severe and immediate burns upon skin contact:

FormulaName
HClO4Perchloric acid
HIHydroiodic acid
HBrHydrobromic acid
HClHydrochloric acid
H2SO4Sulfuric acid
HNO3Nitric acid

The acids listed above are all examples of inorganic acids, sometimes called mineral acids. Mineral/inorganic acids can be strong or weak.

Guardian Equipment G1814 eyewash
OSHA requires eyewashes and safety showers in workplaces where corrosive materials are used. Get yours from Safety Emporium.

Weak acids do not dissociate completely in solution - there is always some of the undissociated material remaining. Examples of these include acetic acid (a 5% solution of acetic acid in water is called vinegar), formic acid, ammonium cation (NH4+), and water itself. In these cases, the incomplete dissociation is indicated with a reversible equilibrium arrow as shown here for the dissolution of ammonium cation in water to produce ammonia and a hydronium ion:

H2O + NH4+   ⇋   NH3 + H3O+

The "equilibrium arrows" between the starting material (reactant) and products indicate that the reaction proceeds in both the forward and backwards directions simultaneously with all species co-existing in solution simultaneously. The relative amounts of products and reactants once the system reaches equilibrium vary from reaction to reaction and are expressed using an equilibrium constant, a topic that is beyond the scope of this text.

Note

Organic substances with names that end in "oic acid" or "ic acid" are called carboxylic acids. Two of the examples we just looked at, formic acid and acetic acid are carboxylic acids. All carboxylic acids are weak acids.

The strength of acidic solutions can be measured using the pH scale. The lower the pH, the greater the acidity of a solution.

Just because an acid is weak does not mean that it can't harm you. For example, HF, hydrofluoric acid, is a weak inorganic acid. When you spill it on your hand it doesn't burn...but over the course of hours it migrates to the bones in your fingers and then begins to dissolve them from the inside out (a painful process; amputation can be required). In addition, systemic effects such as hypocalcemia can cause death. See the HF links under Further Reading below for more information.

Some common properties of acids are:

The concentration of acids can be expressed in many different ways:

  1. Molarity
  2. Percent by mass
  3. Degrees Baumé (indirectly)

SDS Relevance

It is important to know the pH of substances because they may be corrosive or react with incompatible materials. For example acids and bases should not be stored or used near each other as their accidental combination could generate a huge amount of heat and energy, possibly resulting in an explosion - here is a terrific example of what can happen when incompatibles are mixed!

pH is also important to know in case you spill the material on your skin or eyes. Whenever a substance enters the eye, flush with water for 15 minutes and get prompt medical attention.

polyethylene corrosive storage cabinet
Get your corrosion-resistant polyethylene acid storage cabinets with internal sumps from Safety Emporium.

Special care needs to be taken when storing acids. Minor spills and acid fumes can quickly corrode standard metal storage cabinets or soapstone countertops, for example. The best choice for storing acid containers is a chemically-resistant cabinet designed for that purpose, with polyethylene construction being the best choice for laboratory quantities of acids. Polyethylene spill trays are also a very good idea, whether acids are stored on a bench top or in a cabinet.

Further Reading

See also: anyhdride, base, carbon dioxide, corrosive, pH

Additional definitions from Google and OneLook.



Entry last updated: Wednesday, August 10, 2016. This page is copyright 2000-2016 by ILPI. Unauthorized duplication or posting on other web sites is expressly prohibited. Send suggestions, comments, and new entry desires (include the URL if applicable) to us by email.

Disclaimer: The information contained herein is believed to be true and accurate, however ILPI makes no guarantees concerning the veracity of any statement. Use of any information on this page is at the reader's own risk. ILPI strongly encourages the reader to consult the appropriate local, state and federal agencies concerning the matters discussed herein.