The Home page of ILPI's Safety Data Sheet (SDS) Resource, the leader in SDS information since 1995!
The history and philosophy behind this resource.
A curated collection of books and reference materials concerning Safety Data Sheets and closely related topics.
Paste your plain text SDS into the SDS-Demystifier, and it will be converted into a hypertext-enriched document with links to detailed explanations of each key term.
An extensive list of frequently asked questions about Safety Data Sheets including regulations, content, compliance, and more.
A humorous take on Safety Data Sheet jargon. Fill in the blanks on our entry form to generate a personalized Unsafety Data Sheet to share with your coworkers.
Since 1995, we've maintained this massive curated list of the best places to find Safety Data Sheets on the Internet.
Way more than a glossary, this hypertext-enhanced resource covers hundreds of SDS-related terms and expert knowledge. Each entry includes both the SDS relevance and links to additional authoritative resources.
Archived results of Safety Data Sheet related polls taken by some of our millions of site visitors
You are here! The OSHA regulations behind SDS regulations, including the inspection guidelines and over 400 official interpretations letters under the Hazard Communication Standard
Commercial suppliers of SDS authoring and management software as well as cloud compliance services.
Commercial companies that will create SDS's for your specific needs as well as SDS translation companies.
Safety signs, banners, and scoreboards? Get yours at Safety Emporium!
Physical Criteria (Mandatory)
Appendix B to the Hazard Communication Standard, 29 CFR 1910.1200
[Note: Annotations made in green text below are tips/commentary by ILPI, not OSHA.]
B.1 EXPLOSIVES
B.1.1 Definitions and general considerations
Reduce the risk of working with potentially explosive materials with laboratory shields such as this one from Safety Emporium.
B.1.1.1
An explosivechemical is a solid or liquid chemical which is in itself capable by chemical reaction of producing gas at such a temperature and pressure and at such a speed as to cause damage to the surroundings. Pyrotechnic chemicals are included even when they do not evolve gases.
A pyrotechnic chemical is a chemical designed to produce an effect by heat, light, sound, gas or smoke or a combination of these as the result of non-detonative self-sustaining exothermic chemical reactions.
An explosive item is an item containing one or more explosive chemicals.
A pyrotechnic item is an item containing one or more pyrotechnic chemicals.
An unstable explosive is an explosive which is thermally unstable and/or too sensitive for normal handling, transport, or use.
An intentional explosive is a chemical or item which is manufactured with a view to produce a practical explosive or pyrotechnic effect.
(b) Explosive items, except devices containing explosive chemicals in such quantity or of such a character that their inadvertent or accidental ignition or initiation shall not cause any effect external to the device either by projection, fire, smoke, heat or loud noise; and
(c) Chemicals and items not included under (a) and (b) above which are manufactured with the view to producing a practical explosive or pyrotechnic effect.
Chemicals and items of this class shall be classified as unstable explosives or shall be assigned to one of the following six divisions depending on the type of hazard they present:
(a) Division 1.1 - Chemicals and items which have a mass explosion hazard (a mass explosion is one which affects almost the entire quantity present virtually instantaneously);
(b) Division 1.2 - Chemicals and items which have a projection hazard but not a mass explosion hazard;
(c) Division 1.3 - Chemicals and items which have a fire hazard and either a minor blast hazard or a minor projection hazard or both, but not a mass explosion hazard:
(i) Combustion of which gives rise to considerable radiant heat; or
(ii) Which burn one after another, producing minor blast or projection effects or both;
(d) Division 1.4 - Chemicals and items which present no significant hazard: chemicals and items which present only a small hazard in the event of ignition or initiation. The effects are largely confined to the package and no projection of fragments of appreciable size or range is to be expected. An external fire shall not cause virtually instantaneous explosion of almost the entire contents of the package;
(e) Division 1.5 - Very insensitive chemicals which have a mass explosionhazard: chemicals which have a mass explosion hazard but are so insensitive that there is very little probability of initiation or of transition from burning to detonation under normal conditions;
(f) Division 1.6 - Extremely insensitive items which do not have a mass explosionhazard: items which contain only extremely insensitive detonating chemicals and which demonstrate a negligible probability of accidental initiation or propagation.
Explosives shall be classified as unstable explosives or shall be assigned to one of the six divisions identified in B.1.2 in accordance with the three step procedure in Part I of the UN ST/SG/AC.10 (incorporated by reference; See §1910.6). The first step is to ascertain whether the substance or mixture has explosive effects (Test Series 1). The second step is the acceptance procedure (Test Series 2 to 4) and the third step is the assignment to a hazard division (Test Series 5 to 7). The assessment whether a candidate for "ammonium nitrate emulsion or suspension or gel, intermediate for blasting explosives (ANE)" is insensitive enough for inclusion as an oxidizing liquid (See B.13) or an oxidizing solid (See B.14) is determined by Test Series 8 tests.
NOTE: Classification of solid chemicals shall be based on tests performed on the chemical as presented. If, for example, for the purposes of supply or transport, the same chemical is to be presented in a physical form different from that which was tested and which is considered likely to materially alter its performance in a classification test, classification must be based on testing of the chemical in the new form.
B.1.3.2
Explosive properties are associated with the presence of certain chemical groups in a molecule which can react to produce very rapid increases in temperature or pressure. The screening procedure in B.1.3.1 is aimed at identifying the presence of such reactive groups and the potential for rapid energy release. If the screening procedure identifies the chemical as a potential explosive, the acceptance procedure (See section 10.3 of UN ST/SG/AC.10 (incorporated by reference; See §1910.6)) is necessary for classification.
NOTE: Neither a Series 1 type (a) propagation of detonation test nor a Series 2 type (a) test of sensitivity to detonative shock is necessary if the exothermic decomposition energy of organic materials is less than 800 J/g.
(a) There are no chemical groups associated with explosive properties present in the molecule. Examples of groups which may indicate explosive properties are given in Table A6.1 in Appendix 6 of UN ST/SG/AC.10 (incorporated by reference; See §1910.6); or
(b) The substance contains chemical groups associated with explosive properties which include oxygen and the calculated oxygen balance is less than -200.
The oxygen balance is calculated for the chemical reaction:
using the formula: oxygen balance = -1600 [2x +(y/2) -z]/molecular weight; or
(c) The organic substance or a homogenous mixture of organic substances contains chemical groups associated with explosive properties but the exothermicdecomposition energy is less than 500 J/g and the onset of exothermic decomposition is below 500°C (932°F). The exothermic decomposition energy may be determined using a suitable calorimetric technique; or
Gases, other than those of Category 1, which, at 20°C (68°F) and a standard pressure of 101.3 kPa (14.7 psi), have a flammable range while mixed in air.
Flammability shall be determined by tests or by calculation in accordance with ISO 10156 (incorporated by reference; See §1910.6). Where insufficient data are available to use this method, equivalent validated methods may be used.
Aerosol means any non-refillable receptacle containing a gas compressed, liquefied or dissolved under pressure, and fitted with a release device allowing the contents to be ejected as particles in suspension in a gas, or as a foam, paste, powder, liquid or gas.
Aerosols shall be considered for classification as flammable if they contain any component which is classified as flammable in accordance with this Appendix, i.e.:
Contains ≥ 85% flammable components and the chemical heat of combustion is ≥30 kJ/g; or
(a) For spray aerosols, in the ignition distance test, ignition occurs at a distance ≥75 cm (29.5 in), or
(b) For foam aerosols, in the aerosol foam flammability test
(i) The flame height is ≥ 20 cm (7.87 in) and the flame duration ≥2 s; or
(ii) The flame height is ≥ 4 cm (1.57 in) and the flame duration ≥7 s.
2
Contains > 1% flammable components, or the heat of combustion is ≥20 kJ/g; and
(a) for spray aerosols, in the ignition distance test, ignition occurs at a distance ≥15 cm (5.9 in), or in the enclosed space ignition test, the
(i) Time equivalent is ≤300 s/m3; or
(ii) Deflagration density is ≤ 300 g/m3
(b) For foam aerosols, in the aerosol foam flammability test, the flame height is ≥4 cm and the flame duration is ≥2 s and it does not meet the criteria for Category 1
NOTE: Aerosols not submitted to the flammabilityclassification procedures in this Appendix shall be classified as extremely flammable (Category 1).
To classify a flammable aerosol, data on its flammable components, on its chemical heat of combustion and, if applicable, the results of the aerosol foam flammability test (for foam aerosols) and of the ignition distance test and enclosed space test (for spray aerosols) are necessary.
The chemical heat of combustion (ΔHc), in (kilojoules per gram (kJ/g), is the product of the theoretical heat of combustion (ΔHcomb), and a combustion efficiency, usually less than 1.0 (a typical combustion efficiency is 0.95 or 95%).
For a composite aerosol formulation, the chemical heat of combustion is the summation of the weighted heats of combustion for the individual components, as follows:
wi% = mass fraction of component i in the product;
ΔHc(i) = specific heat of combustion (kJ/g) of component i in the product;
The chemical heats of combustion shall be found in literature, calculated or determined by tests (See ASTM D240-02, ISO 13943, Sections 86.1 to 86.3, and NFPA 30B (incorporated by reference; See §1910.6)).
B.3.3.3
The Ignition Distance Test, Enclosed Space Ignition Test and Aerosol Foam Flammability Test shall be performed in accordance with sub-sections 31.4, 31.5 and 31.6 of UN ST/SG/AC.10 (incorporated by reference; See §1910.6).
Oxidizing gas means any gas which may, generally by providing oxygen, cause or contribute to the combustion of other material more than air does.
NOTE: "Gases which cause or contribute to the combustion of other material more than air does" means pure gases or gas mixtures with an oxidizing power greater than 23.5% (as determined by a method specified in ISO 10156 or 10156-2 (incorporated by reference, See §1910.6) or an equivalent testing method.)
Classification shall be in accordance with tests or calculation methods as described in ISO 10156 (incorporated by reference; See §1910.6) and ISO 10156-2 (incorporated by reference; See §1910.6).
Gases under pressure are gases which are contained in a receptacle at a pressure of 200 kPa (29 psi) (gauge) or more, or which are liquefied or liquefied and refrigerated.
They comprise compressed gases, liquefied gases, dissolved gases and refrigerated liquefied gases.
Readily combustible solids are powdered, granular, or pasty chemicals which are dangerous if they can be easily ignited by brief contact with an ignition source, such as a burning match, and if the flame spreads rapidly.
Powdered, granular or pasty chemicals shall be classified as flammable solids when the time of burning of one or more of the test runs, performed in accordance with the test method described in the UN ST/SG/AC.10 (incorporated by reference; See §1910.6), Part III, sub-section 33.2.1, is less than 45 s or the rate of burning is more than 2.2 mm/s (0.0866 in/s).
B.7.2.2
Powders of metals or metal alloys shall be classified as flammable solids when they can be ignited and the reaction spreads over the whole length of the sample in 10 min or less.
B.7.2.3
Solids which may cause fire through friction shall be classified in this class by analogy with existing entries (e.g., matches) until definitive criteria are established.
B.7.2.4
A flammable solid shall be classified in one of the two categories for this class using Method N.1 as described in Part III, sub-section 33.2.1 of UN ST/SG/AC.10 (incorporated by reference; See §1910.6), in accordance with Table B.7.1:
Burning rate test: Chemicals other than metal powders:
(a) wetted zone does not stop fire; and
(b) burning time < 45 s or burning rate > 2.2 mm/s
Metal powders: burning time ≤ 5 min
2
Burning rate test: Chemicals other than metal powders:
(a) wetted zone stops the fire for at least 4 min; and
(b) burning time < 45 s or burning rate > 2.2 mm/s
Metal powders: burning time > 5 min and ≤ 10 min
NOTE:Classification of solid chemicals shall be based on tests performed on the chemical as presented. If, for example, for the purposes of supply or transport, the same chemical is to be presented in a physical form different from that which was tested and which is considered likely to materially alter its performance in a classification test, classification must be based on testing of the chemical in the new form.
A self-reactive chemical is regarded as possessing explosive properties when in laboratory testing the formulation is liable to detonate, to deflagrate rapidly or to show a violent effect when heated under confinement.
(b) It is classified as an oxidizing liquid or an oxidizing solid according to B.13 or B.14 of this appendix, except that a mixture of oxidizing substances which contains 5% or more of combustibleorganic substances shall be classified as a self-reactive chemical according to the procedure defined in B.8.2.2;
Mixtures of oxidizing substances, meeting the criteria for classification as oxidizing liquids or oxidizing solids, which contain 5% or more of combustibleorganic substances and which do not meet the criteria mentioned in B.8.2.1 (a), (c), (d) or (e), shall be subjected to the self-reactive chemicals classification procedure in B.8.2.3. Such a mixture showing the properties of a self-reactive chemical type B to F shall be classified as a self-reactive chemical.
B.8.2.3
Self-reactive chemicals shall be classified in one of the seven categories of "types A to G" for this class, according to the following principles:
(a) Any self-reactive chemical which can detonate or deflagrate rapidly, as packaged, will be defined as self-reactive chemical TYPE A;
(b) Any self-reactive chemical possessing explosive properties and which, as packaged, neither detonates nor deflagrates rapidly, but is liable to undergo a thermal explosion in that package will be defined as self-reactive chemical TYPE B;
(c) Any self-reactive chemical possessing explosive properties when the chemical as packaged cannot detonate or deflagrate rapidly or undergo a thermal explosion will be defined as self-reactive chemical TYPE C;
(d) Any self-reactive chemical which in laboratory testing meets the criteria in (d)(i), (ii), or (iii) will be defined as self-reactive chemical TYPE D:
(i) Detonates partially, does not deflagrate rapidly and shows no violent effect when heated under confinement; or
(ii) Does not detonate at all, deflagrates slowly and shows no violent effect when heated under confinement; or
(iii) Does not detonate or deflagrate at all and shows a medium effect when heated under confinement;
(e) Any self-reactive chemical which, in laboratory testing, neither detonates nor deflagrates at all and shows low or no effect when heated under confinement will be defined as self-reactive chemical TYPE E;
(f) Any self-reactive chemical which, in laboratory testing, neither detonates in the cavitated state nor deflagrates at all and shows only a low or no effect when heated under confinement as well as low or no explosive power will be defined as self-reactive chemical TYPE F;
(g) Any self-reactive chemical which, in laboratory testing, neither detonates in the cavitated state nor deflagrates at all and shows no effect when heated under confinement nor any explosive power, provided that it is thermally stable (self-accelerating decompositiontemperature is 60°C (140°F) to 75°C (167°F) for a 50 kg (110 lb) package), and, for liquid mixtures, a diluent having a boiling point greater than or equal to 150 °C (302 °F) is used for desensitization will be defined as self-reactive chemical TYPE G. If the mixture is not thermally stable or a diluent having a boiling point less than 150 °C (302 °F) is used for desensitization, the mixture shall be defined as self-reactive chemical TYPE F.
For purposes of classification, the properties of self-reactive chemicals shall be determined in accordance with test series A to H as described in Part II of UN ST/SG/AC.10 (incorporated by reference; See §1910.6).
The classification procedures for self-reactive substances and mixtures need not be applied if:
(a) There are no chemical groups present in the molecule associated with explosive or self-reactive properties; examples of such groups are given in Tables A6.1 and A6.2 in the Appendix 6 of UN ST/SG/AC.10 (incorporated by reference; See §1910.6); or
(b) For a single organic substance or a homogeneous mixture of organic substances, the estimated SADT is greater than 75°C (167°F) or the exothermicdecomposition energy is less than 300 J/g. The onset temperature and decomposition energy may be estimated using a suitable calorimetric technique (See 20.3.3.3 in Part II of UN ST/SG/AC.10 (incorporated by reference; See §1910.6))
A pyrophoric liquid shall be classified in a single category for this class using test N.3 in Part III, sub-section 33.3.1.5 of UN ST/SG/AC.10 (incorporated by reference; See §1910.6), in accordance with Table B.9.1:
The liquid ignites within 5 min when added to an inert carrier and exposed to air, or it ignites or chars a filter paper on contact with air within 5 min.
The classification procedure for pyrophoric liquids need not be applied when experience in production or handling shows that the chemical does not ignite spontaneously on coming into contact with air at normal temperatures (i.e., the substance is known to be stable at room temperature for prolonged periods of time (days)).
A pyrophoric solid shall be classified in a single category for this class using test N.2 in Part III, sub-section 33.3.1.4 of UN ST/SG/AC.10 (incorporated by reference; See §1910.6), in accordance with Table B.10.1:
The solid ignites within 5 min of coming into contact with air.
NOTE:Classification of solid chemicals shall be based on tests performed on the chemical as presented. If, for example, for the purposes of supply or transport, the same chemical is to be presented in a physical form different from that which was tested and which is considered likely to materially alter its performance in a classification test, classification must be based on testing of the chemical in the new form.
The classification procedure for pyrophoric solids need not be applied when experience in production or handling shows that the chemical does not ignite spontaneously on coming into contact with air at normal temperatures (i.e., the chemical is known to be stable at room temperature for prolonged periods of time (days)).
A self-heating chemical is a solid or liquid chemical, other than a pyrophoric liquid or solid, which, by reaction with air and without energy supply, is liable to self-heat; this chemical differs from a pyrophoric liquid or solid in that it will ignite only when in large amounts (kilograms) and after long periods of time (hours or days).
NOTE: Self-heating of a substance or mixture is a process where the gradual reaction of that substance or mixture with oxygen (in air) generates heat. If the rate of heat production exceeds the rate of heat loss, then the temperature of the substance or mixture will rise which, after an induction time, may lead to self-ignition and combustion.
A self-heating chemical shall be classified in one of the two categories for this class if, in tests performed in accordance with test method N.4 in Part III, sub-section 33.3.1.6 of UN ST/SG/AC.10 (incorporated by reference; See §1910.6), the result meets the criteria shown in Table B.11.1.
TABLE B.11.1 - Criteria for self-heating chemicals
Category
Criteria
1
A positive result is obtained in a test using a 25 mm sample cube at 140 °C (284 °F)
2
A negative result is obtained in a test using a 25 mm cube sample at 140 °C (284 °F), a positive result is obtained in a test using a 100 mm sample cube at 140 °C (284 °F), and:
(a) The unit volume of the chemical is more than 3 m3; or
(b) A positive result is obtained in a test using a 100 mm cube sample at 120 °C (248 °F) and the unit volume of the chemical is more than 450 liters; or
(c) A positive result is obtained in a test using a 100 mm cube sample at 100 °C (212 °F).
The classification procedure for self-heating chemicals need not be applied if the results of a screening test can be adequately correlated with the classification test and an appropriate safety margin is applied.
B.11.3.2
Examples of screening tests are:
(a) The Grewer Oven test (VDI guideline 2263, part 1, 1990, Test methods for the Determination of the Safety Characteristics of Dusts) with an onset temperature 80°K above the reference temperature for a volume of 1 l;
Any chemical which reacts vigorously with water at ambient temperatures and demonstrates generally a tendency for the gas produced to ignite spontaneously, or which reacts readily with water at ambient temperatures such that the rate of evolution of flammable gas is equal to or greater than 10 liters per kilogram of chemical over any one minute.
NOTE:Classification of solid chemicals shall be based on tests performed on the chemical as presented. If, for example, for the purposes of supply or transport, the same chemical is to be presented in a physical form different from that which was tested and which is considered likely to materially alter its performance in a classification test, classification must be based on testing of the chemical in the new form.
(b) Experience in production or handling shows that the chemical does not react with water, (e.g., the chemical is manufactured with water or washed with water); or
(c) The chemical is known to be soluble in water to form a stable mixture.
Oxidizing liquid means a liquid which, while in itself not necessarily combustible, may, generally by yielding oxygen, cause, or contribute to, the combustion of other material.
An oxidizing liquid shall be classified in one of the three categories for this class using test O.2 in Part III, sub-section 34.4.2 of UN ST/SG/AC.10 (incorporated by reference; See §1910.6), in accordance with Table B.13.1:
Any chemical which, in the 1:1 mixture, by mass, of chemical and cellulose tested, spontaneously ignites; or the mean pressure rise time of a 1:1 mixture, by mass, of chemical and cellulose is less than that of a 1:1 mixture, by mass, of 50% perchloric acid and cellulose;
2
Any chemical which, in the 1:1 mixture, by mass, of chemical and cellulose tested, exhibits a mean pressure rise time less than or equal to the mean pressure rise time of a 1:1 mixture, by mass, of 40% aqueous sodium chlorate solution and cellulose; and the criteria for Category 1 are not met;
3
Any chemical which, in the 1:1 mixture, by mass, of chemical and cellulose tested, exhibits a mean pressure rise time less than or equal to the mean pressure rise time of a 1:1 mixture, by mass, of 65% aqueousnitric acid and cellulose; and the criteria for Categories 1 and 2 are not met.
In the event of divergence between test results and known experience in the handling and use of chemicals which shows them to be oxidizing, judgments based on known experience shall take precedence over test results.
B.13.3.4
In cases where chemicals generate a pressure rise (too high or too low), caused by chemical reactions not characterizing the oxidizing properties of the chemical, the test described in Part III, sub-section 34.4.2 of UN ST/SG/AC.10 (incorporated by reference; See §1910.6) shall be repeated with an inert substance (e.g., diatomite (kieselguhr)) in place of the cellulose in order to clarify the nature of the reaction.
Oxidizing solid means a solid which, while in itself is not necessarily combustible, may, generally by yielding oxygen, cause, or contribute to, the combustion of other material.
An oxidizing solid shall be classified in one of the three categories for this class using test O.1 in Part III, sub-section 34.4.1 of UN ST/SG/AC.10 (incorporated by reference; See §1910.6), in accordance with Table B.14.1:
Any chemical which, in the 4:1 or 1:1 sample-to-cellulose ratio (by mass) tested, exhibits a mean burning time less than the mean burning time of a 3:2 mixture, by mass, of potassium bromate and cellulose.
2
Any chemical which, in the 4:1 or 1:1 sample-to-cellulose ratio (by mass) tested, exhibits a mean burning time equal to or less than the mean burning time of a 2:3 mixture (by mass) of potassium bromate and cellulose and the criteria for Category 1 are not met.
3
Any chemical which, in the 4:1 or 1:1 sample-to-cellulose ratio (by mass) tested, exhibits a mean burning time equal to or less than the mean burning time of a 3:7 mixture (by mass) of potassium bromate and cellulose and the criteria for Categories 1 and 2 are not met.
NOTE 1: Some oxidizing solids may present explosionhazards under certain conditions (e.g., when stored in large quantities). For example, some types of ammonium nitrate may give rise to an explosion hazard under extreme conditions and the "Resistance to detonation test" (IMO: Code of Safe Practice for Solid Bulk Cargoes, 2005, Annex 3, Test 5) may be used to assess this hazard. When information indicates that an oxidizing solid may present an explosion hazard, it shall be indicated on the Safety Data Sheet.
NOTE 2:Classification of solid chemicals shall be based on tests performed on the chemical as presented. If, for example, for the purposes of supply or transport, the same chemical is to be presented in a physical form different from that which was tested and which is considered likely to materially alter its performance in a classification test, classification must be based on testing of the chemical in the new form.
Protect your employees with cabinet labels from Safety Emporium.
In the event of divergence between test results and known experience in the handling and use of chemicals which shows them to be oxidizing, judgements based on known experience shall take precedence over test results.
Organicperoxide means a liquid or solid organic chemical which contains the bivalent -0-0- structure and as such is considered a derivative of hydrogen peroxide, where one or both of the hydrogen atoms have been replaced by organic radicals. The term organic peroxide includes organic peroxide mixtures containing at least one organic peroxide. Organic peroxides are thermally unstable chemicals, which may undergo exothermic self-accelerating decomposition. In addition, they may have one or more of the following properties:
An organicperoxide is regarded as possessing explosive properties when in laboratory testing the formulation is liable to detonate, to deflagrate rapidly or to show a violent effect when heated under confinement.
Organicperoxides shall be classified in one of the seven categories of "Types A to G" for this class, according to the following principles:
Reduce the risk of working with potentially explosive materials with laboratory shields such as this one from Safety Emporium.
(a) Any organicperoxide which, as packaged, can detonate or deflagrate rapidly shall be defined as organic peroxide TYPE A;
(b) Any organicperoxide possessing explosive properties and which, as packaged, neither detonates nor deflagrates rapidly, but is liable to undergo a thermal explosion in that package shall be defined as organic peroxide TYPE B;
(d) Any organicperoxide which in laboratory testing meets the criteria in (d)(i), (ii), or (iii) shall be defined as organic peroxide TYPE D:
(i) detonates partially, does not deflagrate rapidly and shows no violent effect when heated under confinement; or
(ii) does not detonate at all, deflagrates slowly and shows no violent effect when heated under confinement; or
(iii) does not detonate or deflagrate at all and shows a medium effect when heated under confinement;
(e) Any organicperoxide which, in laboratory testing, neither detonates nor deflagrates at all and shows low or no effect when heated under confinement shall be defined as organic peroxide TYPE E;
(f) Any organicperoxide which, in laboratory testing, neither detonates in the cavitated state nor deflagrates at all and shows only a low or no effect when heated under confinement as well as low or no explosive power shall be defined as organic peroxide TYPE F;
(g) Any organicperoxide which, in laboratory testing, neither detonates in the cavitated state nor deflagrates at all and shows no effect when heated under confinement nor any explosive power, provided that it is thermally stable (self-accelerating decompositiontemperature is 60°C (140°F) or higher for a 50 kg (110 lb) package), and, for liquid mixtures, a diluent having a boiling point of not less than 150°C (302°F) is used for desensitization, shall be defined as organic peroxide TYPE G. If the organic peroxide is not thermally stable or a diluent having a boiling point less than 150°C (302°F) is used for desensitization, it shall be defined as organic peroxide TYPE F.
For purposes of classification, the properties of organicperoxides shall be determined in accordance with test series A to H as described in Part II of UN ST/SG/AC.10 (incorporated by reference; See §1910.6).
Mixtures of organicperoxides may be classified as the same type of organic peroxide as that of the most dangerous ingredient. However, as two stable ingredients can form a thermally less stable mixture, the SADT of the mixture shall be determined.
A chemical which is corrosive to metals shall be classified in a single category for this class, using the test in Part III, sub-section 37.4 of UN ST/SG/AC.10 (incorporated by reference; See §1910.6), in accordance with Table B.16.1:
Store acids and other chemicals safely with safety cabinets from Safety Emporium.
Corrosion rate on either steel or aluminium surfaces exceeding 6.25 mm per year at a test temperature of 55 °C (131 °F) when tested on both materials.
NOTE: Where an initial test on either steel or aluminium indicates the chemical being tested is corrosive the follow-up test on the other metal is not necessary.
The specimen to be used for the test shall be made of the following materials:
(a) For the purposes of testing steel, steel types S235JR+CR (1.0037 resp.St 37-2), S275J2G3+CR (1.0144 resp.St 44-3), ISO 3574, Unified Numbering System (UNS) G 10200, or SAE 1020;
(b) For the purposes of testing aluminium: non-clad types 7075-T6 or AZ5GU-T6.